
10 RULES
FOR

SAFER
CODE

RULE #1
EVAL is EVIL

Don’t trust strings supposed to contain expressions or code

“eval” breaks the barrier between
code and data

Is this safe?

Maybe… it depends.

Is it a good idea?

No, because eval() is not necessary!

There are safer and smarter ways
to parse data in python PYTHON

“42” int(x)
float(x)

Given this
string Parse it

like this

“[1,2,3,true]”
json.loads(x)

‘{“widget”: “monetary”}’

“[1,2,3,True]” ast.literal_eval(x)
”{‘widget’: ‘monetary’}”

There are safer and smarter ways
to parse data in python JAVASCRIPT

“42” parseInt(x)
parseFloat(x)

Given this
string Parse it

like this

“[1,2,3,true]”
JSON.parse(x)‘{“widget”: “monetary”}’

If you must eval parameters
use a safe eval method

YES
from odoo.tools import safe_eval
res = safe_eval(’foo’, {’foo’: 42});

NO
from odoo.tools import safe_eval as eval
res = eval(’foo’, {’foo’: 42});

Alias built-in eval as ”unsafe_eval”

Show your meaning!

YES
unsafe_eval = eval
res = unsafe_eval(trusted_code);

NO!
res = eval(trusted_code);

Import as ”safe_eval”, not as ”eval”!

If you must eval parameters
use a safe eval method

// py.js is included by default
py.eval(’foo’, {’foo’: 42});

// require(”web.pyeval”) for
// domains/contexts/groupby evaluation
pyeval.eval(’domains’, my_domain);

Do not use the built-in JS eval!

50%
of vulnerabilities found every year include

remote code execution injected via

unsafe eval

RULE #2
YOU SHALL NOT

PICKLE

Don’t use it. Ever. Use JSON.

“Warning: The pickle module is not intended to
be secure against erroneous or maliciously
constructed data. Never unpickle data received
from an untrusted or unauthenticated source.

”

Python’s pickle serialization is:
+unsafe +not portable

+unreadable

pickle.dumps({“widget”:“monetary”}) == "(dp0\nS'widget'\np1\nS'monetary'\np2\ns."

Actually a
stack-based
language!

Pickle is unsafe
Seriously.

>>> yummy = "cos\nsystem\n(S'cat /etc/shadow | head -n 5'\ntR.'\ntR."
>>> pickle.loads(yummy)
root:6m7ndoM3p$JRVXomVQFn/KH81DEePpX98usSoESUnml3e6Nlf.:14951:0:99999:7:::
daemon:x:14592:0:99999:7:::
(…)
>>>

Use JSON instead!

json.dumps({“widget”:“monetary”}) == '{"widget": "monetary"}'

+safe +portable
+readable

RULE #3
USE THE CURSOR

WISELY

Use the ORM API. And when you can’t, use query parameters.

SQL injection is a classical privilege
escalation vector

self.search(domain)The ORM is here to help you build safe queries:

Psycopg can also help you do that , if you tell
it what is code and what is data:

query = ”””SELECT * FROM res_partner
WHERE id IN %s”””

self._cr.execute(query, (tuple(ids),))

SQL code

SQL data parameters

Learn the API to avoid hurting
yourself
and
other people!

This method is vulnerable
to SQL injection

def compute_balance_by_category(self, categ=’in’):
query = ”””SELECT sum(debit-credit)

FROM account_invoice_line l
JOIN account_invoice i ON (l.invoice_id = i.id)

WHERE i.categ = ’%s_invoice’
GROUP BY i.partner_id ”””

self._cr.execute(query % categ)
return self._cr.fetchall()

What if someone calls it with

categ = ”””in_invoice’; UPDATE res_users
SET password = ’god’ WHERE id=1; SELECT
sum(debit-credit) FROM account_invoice_line
WHERE name = ’”””

This method is still vulnerable
to SQL injection

def _compute_balance_by_category(self, categ=’in’):
query = ”””SELECT sum(debit-credit)

FROM account_invoice_line l
JOIN account_invoice i ON (l.invoice_id = i.id)

WHERE i.categ = ’%s_invoice’
GROUP BY i.partner_id ”””

self._cr.execute(query % categ)
return self._cr.fetchall()

Better, but it could still be called
indirectly!

Now
private!

This method is still vulnerable
to SQL injection

def _compute_balance_by_category(self, categ=’in’):
assert categ in (’in’, ’out’)
query = ”””SELECT sum(debit-credit)

FROM account_invoice_line l
JOIN account_invoice i ON (l.invoice_id = i.id)

WHERE i.categ = ’%s_invoice’
GROUP BY i.partner_id ”””

self._cr.execute(query % categ)
return self._cr.fetchall()

Better, but assert can be optimized
out and ignored

(e.g. in Windows builds)

Now checked
with assert!

This method is safe against
SQL injection

def _compute_balance_by_category(self, categ=’in’):
categ = ’%s_invoice’ % categ
query = ”””SELECT sum(debit-credit)

FROM account_invoice_line l
JOIN account_invoice i ON (l.invoice_id = i.id)

WHERE i.categ = %s
GROUP BY i.partner_id ”””

self._cr.execute(query, (categ,))
return self._cr.fetchall()

Separates code
and parameters!

RULE #4
Fight XSS-FORCE

(t-raw, uploadS, html fields, . . .)

So many XSS vectors – gotta watch ’em all

