

" B
%
% oo

Don’t trust strings supposed to contain expressions orcode Jour own!)

even

“eval” breaks the barrier between
code and data

result = self.env.ref('account.%s" % (xml_id)).read()[0]
invoice_domain = eval(result['domain'])

Is this safe? Is it a good idea?

I |
Maybe...it depends. No, because eval() is not necessary!

There are safer and smarter ways
to parse data in P/T

-———
~
~

——————— 4
) -~ St \\\ ,,/ \\\\
K . .) / v
{ Giventhis } Y J) Y
string v :. Pjarse 1.13 \
ugon int(x) v likethis |/
float(x)

“11,2,3,true]” .
json.loads(x)
‘{“widget”: "“monetary”}’

“[1,2,3,Truel” ast.literal eval(x)

"{'widget’: ‘monetary’}”

There are safer and smarter ways

to parse data in JAVASCRIPT

—-—N
\\\\\\\\
-

f Given this 4 \
string
“42 ”

“[1,2,3:true]"

‘{“widget”: “monetary”}’

,/, \?,»

¢ f Parse it %
parselnt(x) \ like this)
parseFloat(x)
JSON.parse(x)

If you must eval parameters
use a safe eval method

/

Import as "safe_eval” not as "eval”!

YES
from odoo.tools import safe_eval
res = safe_eval('foo’, {'foo': 42});

NO
from odoo.tools import safe_eval as eval
res = eval('foo", {"foo": 42});

N

Alias built-in eval as "unsafe_eval”

YES
unsafe_eval = eval
res = unsafe_eval(trusted_code);

NO!
res = eval(trusted_code);

If you must eval parameters
use a safe eval method

// py.js 1s included by default
py.eval('foo’, {"foo': 42});

// require(”web.pyeval”) for
// domains/contexts/groupby evaluation
pyeval.eval(’'domains’, my_domain);

of vulnerabilities found everyyearﬁ;i‘;lud'
injectedvia *

YOU SH

i : |
5

Don’t useit. Ever. Use JSON.

Warnmg The pzckle module is not mtended to
* be secure against erroneous or maliciously
constructed data. Neverunpickle data received
from an untrusted or unauthenticated source.

N _".',“.»,'-'-- A ; A) . :
»- SRR A . Y .
L. R k. & g e s . A X
e e ' PR . .
‘ ..‘v"..“. 0 N g 3 .
)',7—1” T F 1 . i .
PG54 L e e A : :
w P K X : S . .
- - e o = ~ ! 3
-~ o 4 o k 2 > s
. - : . - ¥ : " . v- . 1
- ; ! Ny NN N it o . : ; . 2 (-STRTIEN,
< : Ayl _ . { ~ 3 . 3 v
\) .

Python’s pickle serialization is:
unsafe +not portable
unreadable

pickle.dumps({“widget”:“monetary”}) == "(dp0\nS'widget"\np1\nS 'monetary'\np2\ns."

\\\\\
.

I' \\ /)
',' Actually a \‘/’
| stack-based |
\languagel/

\ /

Pickle is Unsafe
Seriously.

>>> yummy = "cos\nsystem\n(S'cat /etc/shadow | head -n 5'\ntR."'\ntR."
>>> pickle.loads(yummy)

root:6m7ndoM3p$JRVXomVQFn/KH81DEePpX98usSoESUnml3e6N1f. :14951:0:99999:7: ::
daemon:x:14592:0:99999:7: ::

)

>>>

Use instead!

json.dumps({“widget”:“monetary”}) == "{"widget": "monetary"}'

safe +portable
readable

HS

Use the ORM API. And whenyou can’t, use query parameters.

SQL injection is a classical privilege

The ORM is here to help you build safe queries: self.search(domain)
Psycopg can also help you do that, if you tell query = """SELECT * FROM res_partner
itwhat is code and what s : WHERE id IN %s"""

self._cr.execute(query,

SQL code J (

Learn the API to avoid hurting
yourself

and

other people!

This method is vulnerable
to SQL injection

def (self, categ="1in"):
query = """SELECT sum(debit-credit)
FROM account_invoice line 1
JOIN account_invoice 1 ON (l.invoice_1d = 1.1d)
WHERE i.categ = '"%s_1invoice’
GROUP BY i.partner_id """
self._cr.execute(query % categ)
return self. cr.fetchall()

What if someone calls it with

categ = """1in_invoice’'; UPDATE res_users
SET password = 'god’ WHERE id=1; SELECT
sum(debit-credit) FROM account_invoilce_line
WHERE name = """"

This method is still vulnerable
to SQL injection

Now
private!
(self, categ="1in"):

def
query = """SELECT sum(debit-credit)
FROM account_invoice line 1
JOIN account_invoice 1 ON (l.invoice _id = 1.1id)
WHERE i.categ = '"%s_1invoice’
GROUP BY 1.partner_id """

self._cr.execute(query % categ)
return self. cr.fetchall()

Better, but it could still be called
indirectly!

This method is still vulnerable
to SQL injection

def (self, categ="1in"):
assert categ in ('in’, 'out’) w_ qumhed@?
query = """SELECT sum(debit-credit) with assert:
FROM account_invoice line 1
JOIN account _1invoice 1 ON (l.invoice id = 1.1d)
WHERE 1.categ = "%s_1invoice’
GROUP BY i.partner_id """
self._cr.execute(query % categ)
return self. cr.fetchall()

Better, but assert can be optimized
out and ignored
(e.g.in Windows builds)

This method is against
SQL injection

def (self, categ="1in"):
categ = '%s_1involce’ % categ
query = """SELECT sum(debit-credit)
FROM account_invoice line 1
JOIN account_invoice 1 ON (l.invoice_id = 1.1d)
WHERE 1.categ = %S ®~—___
GROUP BY i.partner_id """ —
self._cr.execute(query, (categ,)) . Separates code

return self. cr.fetchall() anclparanneters!

#4

FIGHT A%C-%"GR{‘%
(T-RAW, UPLOADS, HTML FIELD

So many XSS vectors - gottawatch ’em all

